

56th INTERNATIONAL CHEMISTRY OLYMPIAD 2024 UK Round One MARK SCHEME

Although we would encourage students to always quote answers to an appropriate number of significant figures, do not penalise students for significant figure errors. Allow where a student's answers differ slightly from the mark scheme due to the use of rounded/non-rounded data from an earlier part of the question.

In general, 'error carried forward' (referred to as ECF) can be applied. We have tried to indicate where this may happen in the mark scheme and where ECF is not allowed.

For answers with missing or incorrect units, penalise one mark for the first occurrence in **each** question and write **UNIT** next to it. Do not penalise for subsequent occurrences in the same question.

Organic structures are shown in their skeletal form, but also accept displayed formulae if the representation is unambiguous.

State symbols are not required for balanced equations and students should not be penalised if they are absent.

No half marks are to be awarded. One blank tick box has been included per mark available for each part. Please mark by placing a tick in each box if mark is scored.

Question	1	2	3	4	5	Total
Marks Available	8	15	20	24	15	82

1.	This question is ab	out Bronze			Mark		
(a)	[Ar]4d ¹⁰	[Ar]4d ¹⁰ 5s ¹	[Kr]4d ¹⁰	[Kr]4d ¹⁰ 5s ¹ ✓			
(b)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰						
	1s²2s²2j	o ⁶ 3s²3p ⁶ 3d ⁹ ✓	1s ² 2s ² 2p ⁶ 3	s²3p ⁶ 4s²3d ⁹			
(c)	$volume = \frac{mass}{density}$ $volume = \frac{4600 \text{ g}}{10.5 \text{ g cm}^{-3}}$ $volume = 438 \text{ cm}^3 = 0.438 \text{ dm}^3 = 4.38 \times 10^{-4} \text{ m}^3$ Answer acceptable in cm ³ , dm ³ , or m ³ .						
(d)	Answer acceptable in cm ³ , dm ³ , or m ³ . $density = \frac{4(M_{(Cu)} + y(M_{(Sn)} - M_{(Cu)}))}{5.93 \times 10^{-23} \text{ cm}^3 \times N_A}$ 7.85 g cm ⁻³ = $\frac{4(63.55 + y(118.71 - 63.55)) \text{ g mol}^{-1}}{5.93 \times 10^{-23} \text{ cm}^3 \times 6.022 \times 10^{23} \text{ mol}^{-1}}$ 7.85 g cm ⁻³ = $\frac{(254.2 + 220.64y) \text{ g mol}^{-1}}{35.71046 \text{ cm}^3 \text{ mol}^{-1}}$ 280.32711 g cm ⁻¹ = $(254.2 + 220.64y) \text{ g cm}^{-1}$ $\frac{26.12711}{220.64} = y$ y = 11.8%						
(e)	No mark to be award Note some students This should also be they are exact and it experimentally deter answer should be st	$a^{2} + a^{2}$ $a^{2} =$ $a =$ $a = 2\sqrt{2} \times 1$ $a = 3.62$ $a = 3.62$ ded if answer not given i may also write answers marked incorrect. Whilst t avoids rounding errors, mined atomic radius wh ated in decimal form.	$f = (4r)^{2}$ $= 8r^{2}$ $2\sqrt{2}r$ $.28 \times 10^{-12} \text{ m}$ $\times 10^{-10} \text{ m}$ $\times 10^{-8} \text{ cm}$ in cm as this was asked in terms of surds (e.g., t the use of surds in mathematical the final value here is black in the second term in the final value here is black in the second term in te	for in the question. $256\sqrt{2} \times 10^{-10}$ cm). ths is preferred as based on an error, and so the			

(f)	$volume = a^{3}$ $volume = (3.62 \times 10^{-8} \text{ cm})^{3}$ $volume = 4.75 \times 10^{-23} \text{ cm}^{3}$ Allow ECF from part (e). Incorrect units should only be penalised once per question, so if the answer was given in m in part (e) and m ³ here (instead of cm ³ as asked for), this answer can be marked correct.	
(g)	$atoms in unit cell = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$ $mass of Cu atoms in unit cell = \frac{4 \times 63.55 \text{ g mol}^{-1}}{6.022 \times 10^{23} \text{ mol}^{-1}}$ $mass of Cu atoms in unit cell = 4.2212 \times 10^{-22} \text{ g}$ $density = \frac{4.2226 \times 10^{-22} \text{ g}}{4.75 \times 10^{-23} \text{ cm}^3}$ $density = 8.89 \text{ g cm}^{-3}$ Correct answer scores both marks. One mark can be awarded if correct statement of number of atoms in a unit cell. Alternatively one mark can be awarded if number of atoms in a unit cell. Alternatively one mark can be awarded if number of atoms in a unit cell. Alternatively one mark can be awarded if number of atoms in a unit cell is incorrect but remainder of calculation is correct. Allow ECF from part (f). Incorrect units should only be penalised once per question, so if the answer was given in m in part (e) for example and g m ⁻³ here (instead of g cm ⁻³ as asked for), this answer can be marked correct.	N N
	Total out of 8	8

	Final answer scores both marks. Award one mark if the amount of I_2 formed is correct, or if amount of I_2 formed is incorrect but rest of calculation is done correctly using this incorrect amount. Allow ECF if working is correct here, but incorrect stoichiometric ratios are used that are consistent with equations written in parts (e)(i) and (f). Allow reasonable rounding in answers.										
(h)	Volume of thiosulfate solution that is needed to react with iodine formed by reaction of the metal ion with iodide:										
	$V_{excess} = 27.40 \text{ cm}^3 - 23.49 \text{ cm}^3 = 3.91 \text{ cm}^3$										
	Therefore, the amount of iodine formed by the reaction of the metal ion with iodide:										
		3.91×10^{-3}	$dm^3 \times 0.10$	00 mol dm ⁻³ :	$\times \frac{1}{2} = 1.955$	$\times 10^{-4}$ mol					
	The amount of metal ion in the sample is the same as the amount of iodate ions in the sample calculated in part (g), therefore:										
	$\frac{n_{I_2}}{n_{M^{n+}}} = \frac{1.955 \times 10^{-4} \text{ mol}}{3.9145 \times 10^{-4} \text{ mol}} = 0.49943 = 0.5$										
	Therefore 0.5 mol of iodine are produced by the reaction of 1 mol of metal ion with excess iodide ions.										
	Final answe amount of ic answer is 1.	er scores both odine formed. .5 mol of iodir	marks. One If they use the per mol of	mark can be ne volume val metal ion. All	awarded for o lue given (15. ow ECF from	correct calcula 67 cm ³), ther part (g).	ation of n the final				
(i)	+(n+3)	+(n+2)	+(n+1)	+(n)	+(n-1)	+(n-2)	+(n-3)				
					\checkmark						
	As 0.5 mol o metal must given as 15.	of l₂ are prod∟ have decreas .67 cm³, then	iced by the re ed by 1. If the the correct a	eaction of 1 m ey used the ir nswer here is	nol of M ⁿ⁺ , the ncorrect volur s +(n−3).	oxidation stance ne value for p	ate of the part (g)				
(j)	Two correct three or mo	tions are nec re ions given	essary to get that include t	the mark; on wo correct an	e correct ion o swers can av	only scores n vard mark.	o mark. If				
	Expected ar	nswers (two o	f): HCO₃ [−] , CO	D₃²⁻, HSO₃⁻, S	SO3 ²⁻ , NO2 ⁻ .						
	lons such as is worth disc minerals col	s H ⁻ can be c cussing with s ntain the hydi	redited as hy students that i ride ion.	drides do give these react w	e a gas upon ith water, and	reaction with I no naturally	acid, but it occurring				
	lons such as give NO ₂ ga demonstrate 2 mol dm ⁻³	s Γ or S ^{2−} whi as can be crea ed with conce HNO₃ in this a	ich could be o dited. It is woi ntrated nitric question.	oxidised, with th noting that acid, and this	concomitant t these reaction result may n	reduction of l ons are most ot be seen w	HNO₃ to commonly ith the				
	lons such as these ions a evolution wo	s NH₂⁻, F⁻, Cl are gaseous, a ould be obser	√ should not these gases a ved.	be credited. are also highly	Although the y water solub	protonated fo le, and it is lil	orms of kely no gas				

(k)	M ⁿ⁺	Sc ³⁺	Fe ²⁺	Fe ³⁺	Cu⁺	Cu ²⁺	Mg ²⁺	Ga ²⁺	Zn ²⁺		
	Z ^{m-}	F-	CI-	Br⁻	H⁻	O ²⁻	OH⁻ ✔	PO ₄ ³⁻	SO ₃ ²⁻		
	One mark for each correct identification. No marks for that ion if more than one box is ticked in a row. As charge on iodate = -1 , we know than $(n + + m -) = +1$. Remaining molar mass of mineral = 255.46 g mol ⁻¹ – 174.90 g mol ⁻¹ = 80.56 g mol ⁻¹ . After this, students should look for a suitable molar mass combination. You may wish to point out to students that the presence of Cu ²⁺ gives a characteristic colour to the mineral however this knowledge is not needed to solve the problem										
								Total	out of 15	15	

3.	This question is about fuel-producing bacteria.	Mark							
(a)	C ₃ H ₆ Allow if drawn out as a structural formula.								
(b)	(i) $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$ State symbols not required. Accept any multiple with correct stoichiometry.								
	(ii) $(3 \times -393.5 \text{ kJ mol}^{-1}) + (3 \times -285.8 \text{ kJ mol}^{-1}) - y = -2091 \text{ kJ mol}^{-1}$ $y = (3 \times -393.5 \text{ kJ mol}^{-1}) + (3 \times -285.8 \text{ kJ mol}^{-1}) + 2091 \text{ kJ mol}^{-1}$ $y = 53.1 \text{ kJ mol}^{-1}$ Do not award mark if value quoted as negative.	V							
	(iii) $\frac{-2091 \text{ kJ mol}^{-1}}{3} = -697.0 \text{ kJ mol}^{-1}$ Do not award mark if value quoted as positive.								
	(iv) $\frac{-3951 \text{ kJ mol}^{-1}}{6} = -658.5 \text{ kJ mol}^{-1}$ Do not award mark if value quoted as positive unless already penalised for incorrect sign in part (iii).	V							
(c)	A delocalised structure can be accepted.	V							
(d)	The enolate intermediate acts a reducing agent; the iodomethane acts an oxidising agent. The enolate intermediate acts an oxidising agent; the iodomethane acts a reducing agent. The enolate intermediate acts an electrophile; the iodomethane acts a nucleophile. ✓ The enolate intermediate acts a nucleophile; the iodomethane acts an electrophile. ✓ The enolate intermediate acts a nucleophile; the iodomethane acts an electrophile. The enolate intermediate acts a nucleophile; the iodomethane acts an electrophile. The enolate intermediate acts a nucleophile; the iodomethane acts an electrophile. The enolate intermediate acts an acid; the iodomethane acts a base. The enolate intermediate acts a base; the iodomethane acts an acid. Fourth box must be ticked for mark. If the first box has been ticked, then do not penalise for this. An argument can be made for the first statement depending on which electronegativity value of iodine is used, if students analyse the reaction as per the method in Q5. No marks if any other boxes ticked.								
(e)	O OH	$\mathbf{\nabla}$							

(f)	(i)	B O CI							c O V V				2
	D C D D D D D D D D D D D D D						ed Ikene. Inarks for E .	Alla C each for ECF cai	cow if d cow if d can aw D anco n be a	E HN- Irawn as ei vard 1 mark	N namine tauto N ^{NH} 2 k for hydrazo	omer one	Image: Constrained state
	(ii)	Both s	steps	step 1	ticked a	o 2 nd no c	st st	aldol rea ep 3 ✓	ste y be ti	ep 4	step 5	re the	R
(g)		oxidatio	n	reduction	n cond	densati	on ł	hydrolysi	s iso	omerisatior	n eliminat	ion	$\mathbf{\nabla}$
(h)	On	ne mark	1	X CO ₂	I			One man	k	Y HS			\mathbf{N}
(i)		firs rec f	st en quire proce	azyme ed for ess	secono requ pro	d enzyn ired for ocess 2	ne	third er require proc	nzyme ed for ess	e las rec p	t enzyme juired for process		N
	No	partial m	narks	s. All four i	must be	correc	t for th	ne two ma	arks.		Total ou	 It of 20	20

(d)	Formula of ga	adopiclenol: C	35H54GdN7C	D ₁₅					
	Molar mass o	of gadopiclenc	bl						
	$= (35 \times 12.01 + 54 \times 1.008 + 157.25 + 7 \times 14.01 + 15 \times 16.00) \text{ g mol}^{-1}$ $= 970.102 \text{ g mol}^{-1}$								
	$= 970.102 \text{ g mol}^{-1}$								
	concentration of dose solution = $\frac{485.05 \text{ g dm}^{-3}}{970.102 \text{ g mol}^{-1}}$								
	$= 0.5000 \text{ mol } dm^{-3}$ amount of gadolinium administered = 0.5000 mol $dm^{-3} \times 0.00600 dm^{3}$								
			=	0.003000 mo	ol				
		mass of g	gadolinium	= 0.003000	mol × 157.25	g mol ⁻¹			
			= 0	3.472 g = 472	mg				
	Accept answ	rer in either mo	g or g.						
(e)	radiowave	microwave	IR	visible	UV	X-ray	gamma ray		
	\checkmark								
	No calculatio radiowave fre	n is required l equencies and	here as stud I that this is	lents should l studying the	know that NM same phenor	IR operates menon.	with		
(f)			М	$= M_0 \left(1 - e^{-1} \right)$	$\left(\frac{t}{\tau}\right)$				
			М	$= M_0 \left(1 - e^{-1} \right)$	$\left(\frac{3\tau}{\tau}\right)$				
			М	$= M_0(1 - e^{-1})$	³)				
			М	$M = M_0(0.9502)$	2)				
			М	= 95.0% of l	M ₀				
	Answer must	t be quoted as	a percenta	ge to be awa	rded mark.				
(g)			[gadopicle	nol] = 0.0500	mol dm ⁻³				
			[wate	$r] = \frac{1000 \text{ g o}}{10.016 \text{ g o}}$	$\frac{1}{m}$				
			[water]	10.010 g l — 55 506 mc	dm^{-3}				
	The molar fra	action can be v	written in tei	rms of concer	ntration.				
				[gadopiclen	ol]				
			χ =	[water]					
			$\chi =$	0.0500 mol d	$\frac{m^{-3}}{m^{-3}}$				
			ν	$= 9.01 \times 10^{-10}$	-4				
	Correct answ water has be out by a pow	ver scores bot een calculated rer(s) of 10 on	ہ h marks. Or correctly. A ly, for exam	ne mark can k Iternatively of ple writes 0.9	be given if the ne mark can i	e molar conc be awarded	centration of I if student is		

(h)
$$\begin{array}{c|c} r_{\varepsilon} = \frac{k}{B^{2}} \\ r = r_{\varepsilon} + \frac{k}{B^{2}} \\ r_{1} = r_{\varepsilon} + \frac{k}{B^{2}} \\ r_{1} = r_{\varepsilon} + \frac{k}{B^{2}} \\ B_{1}^{2}(r_{1} - r_{\varepsilon}) = k \\ r_{2} = r_{\varepsilon} + \frac{k}{B^{2}} \\ B_{2}^{2}(r_{2} - r_{\varepsilon}) = k \\ B_{1}^{2}(r_{1} - r_{\varepsilon}) = B_{2}^{2}(r_{2} - r_{\varepsilon}) \\ B_{1}^{2}r_{1} - B_{1}^{2}r_{\varepsilon} = B_{2}^{2}r_{2} - B_{2}^{2}r_{\varepsilon} \\ B_{2}^{2}r_{\varepsilon} - B_{1}^{2}r_{\varepsilon} = B_{2}^{2}r_{2} - B_{2}^{2}r_{\varepsilon} \\ B_{2}^{2}r_{\varepsilon} - B_{1}^{2}r_{\varepsilon} = B_{2}^{2}r_{\varepsilon} - B_{1}^{2}r_{1} \\ r_{\varepsilon}(B_{2}^{2} - B_{1}^{2}) = B_{2}^{2}r_{2} - B_{1}^{2}r_{1} \\ r_{\varepsilon}(B_{2}^{2} - B_{2}^{2}) \end{array}$$
The subscripts 1 and 2 are interchangeable in this equation. So this other expression is also correct.
$$r_{\varepsilon} = \frac{B_{1}^{2}r_{1} - B_{2}^{2}r_{2}}{r_{\varepsilon}} \\ r_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}}} \\ r_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}} \\ r_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}} \\ r_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}} \\ r_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}}} \\ R_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}} \\ R_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}} \\ R_{\varepsilon} = \frac{1}{q_{X}} \times \frac{1}{r_{\varepsilon}}} \\ R_{\varepsilon} = \frac{1}{q_{X}} R_{\varepsilon} \\ R_{\varepsilon} = \frac{1}{q_$$

$$\begin{array}{|c|c|c|c|c|} \hline 0 & y_1 = \frac{a}{r_1} + b \ \text{and} \ y_2 = \frac{a}{r_2} + b & y_1 T_1 - y_2 T_2 = b(T_1 - T_2) & b = \frac{y_1 T_1 - y_2 T_2}{(T_1 - T_2)} & b = \frac{bn(T_1 T_2 + T_1 T_1 - \ln(T_2 T_2 - 2)T_2}{(T_1 - T_2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 + 1)T_1 - \ln(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & b = \frac{bn(T_2 T_2 - 2)T_2}{(T_2 - 2)} & \frac{bn(T_2 T_2 - 2)T_2}$$

5.	This question is about sulfur-containing molecules in the atmosphere	Mark
(a)	B C E 0 -2 +2 One mark each.	<u></u>
(b)	(i) $C_2H_6S + \frac{1}{2}O_2 \rightarrow C_2H_6OS$ State symbols not required. Accept any multiple with correct stoichiometry.	V
	(ii) $O \to O^-$ $S \to S^+$ Either of the two resonance structures is acceptable for full marks.	V
(c)	SO3	V
(d)	G is SO ₃ . One mole of SO ₃ forms one mole of H ₂ SO ₄ , which forms two moles of H ⁺ ions. $n_{SO_3} = \frac{pV}{RT} = \frac{100000 \text{ Pa} \times 13.4 \times 10^{-6} \text{ m}^3}{8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1} \times 323 \text{ K}} = 4.99 \times 10^{-4} \text{ mol}$ $n_{H^+} = 9.98 \times 10^{-4} \text{ mol}$ As sample is dissolved in 1.000 dm ³ of water $[H^+] = 9.98 \times 10^{-4} \text{ mol} \text{ dm}^{-3}$ $pH = -\log_{10} [H^+]$ $pH = -\log_{10} [9.98 \times 10^{-4}]$ $pH = 3.003 \approx 3$ Only numerical answer needed for mark. No reasoning is required. Mark can be awarded if they have not rounded to the nearest whole number. If the student has forgotten the factor of two for the diprotic acid do not award mark.	V

(e)			Forming J	Forming N [•]		
		Loss of a H⁺				
		Loss of a H [•]		\checkmark	-	
		Loss of a H ⁻			-	
		Reduction of sulfur			-	
		Oxidation of sulfur	✓		-	\mathbf{N}
		Atomisation			-	
		Radical substitution			-	
		Radical addition	✓		-	
	One mark for e cannot be less	each correct tick. Minus on than zero. E.g., Three cor	e mark for any in rect ticks and on	correct tick. To e incorrect tick	otal for this part scores total of two.	
(f)	HO					
(g)	[C] is large and	l effectively constant over t	the experiments.			
	Rate of loss of	L [•] in Experiment 1 decays	with a half-life of	f 10 s, so react	ion is first order in	
	L. An effective firs	st-order rate law (with cons	stant [C]) is rate =	= & [L']. where	$e k_{\text{eff}}$ is a function of	
	[C]	Υ.	L 1/	[])		$\mathbf{\overline{\mathbf{A}}}$
	In Experiment 2 [C] is also half $k_{\text{eff}} = k[\mathbf{C}]$, mak	2, [L'] decreases more slov of that in Experiment 1, we ing:	wly, with a half-lif e conclude that <i>k</i>	e of 20 s, so <i>k</i>	_{eff} is halved. Since al to [C], <i>i.e.</i> ,	$\mathbf{\nabla}$
	rate = <i>k</i> [C] ¹ [L •] ¹					
	So <i>a</i> =1 and <i>b</i> =	= 1				
	No reasoning is	s needed. One mark for co	prrect value of a a	and one mark f	or correct value of b.	
(h)		$k_{2eff} = k_3[X] = 5.7$	$7 \times 10^{-12} \text{ cm}^3 \text{ mo}^3$	lecules ⁻¹ s ⁻¹		
	At 298 K, 100 k	Pa, the volume of 1 mol o	f an ideal gas is g	given by:		
	<i>V</i> =	$=\frac{nRT}{P}=\frac{1\times 8.314 \text{ J K}^{-1} \text{ mo}}{100000}$	$\frac{\mathrm{ol}^{-1} \times 298 \mathrm{K}}{\mathrm{Pa}} = 0.9$	$02478 \text{ m}^3 = 24$	4.78 dm ³	
	[12]	$1 mol \times 6.02 \ 10^{23}$ (molecul	les) mol ⁻¹	102 10 ²²		\mathbf{N}
	[X] = -	24.78 dm ³	= 2.42	-2^{-2}	cules dm	
		[X] = 2.4293	3×10^{19} molecules	$s \text{ cm}^{-3}$		
		$k_3 = \frac{5.7 \times 10}{2.4293}$	$\times 10^{19}$ molecules	$\frac{s}{s}$ cm ⁻³		
		$k_3 = 2.3 \times 10^{-5}$	⁻³¹ cm ⁶ molecule	$s^{-2} s^{-1}$		
	One mark for c	orrect numerical value in r	magnitude. One r	mark for correc	t units.	
					Total out of 15	15